Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(2): e0336723, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38214523

RESUMO

Shewanella is a prevalent bacterial genus in deep-sea environments including marine sediments, exhibiting diverse metabolic capabilities that indicate its significant contributions to the marine biogeochemical cycles. However, only a few Shewanella phages were isolated and deposited in the NCBI database. In this study, we report the isolation and characterization of a novel Shewanella phage, vB_SbaS_Y11, that infects Shewanella KR11 and was isolated from the sewage in Qingdao, China. Transmission electron microscopy revealed that vB_SbaS_Y11 has an icosahedral head and a long tail. The genome of vB_SbaS_Y11 is a linear, double-stranded DNA with a length of 62,799 bp and a G+C content of 46.9%, encoding 71 putative open reading frames. No tRNA genes or integrase-related feature genes were identified. An uncharacterized anti-CRISPR AcrVA2 gene was detected in its genome. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analyses indicate that vB_SbaS_Y11 has a novel genomic architecture and shares low similarity to Pseudomonas virus H66 and Pseudomonas phage F116. vB_SbaS_Y11 represents a potential new family-level virus cluster with eight metagenomic assembled viral genomes named Ranviridae.IMPORTANCEThe Gram-negative Shewanella bacterial genus currently includes about 80 species of mostly aquatic Gammaproteobacteria, which were isolated around the globe in a multitude of environments, such as freshwater, seawater, coastal sediments, and the deepest trenches. Here, we present a Shewanella phage vB_SbaS_Y11 that contains an uncharacterized anti-CRISPR AcrVA2 gene and belongs to a potential virus family, Ranviridae. This study will enhance the knowledge about the genome, diversity, taxonomic classification, and global distribution of Shewanella phage populations.


Assuntos
Bacteriófagos , Shewanella , Bacteriófagos/genética , Shewanella/genética , Filogenia , Análise de Sequência de DNA , Genoma Viral , Fases de Leitura Aberta , DNA Viral/genética
2.
Int Microbiol ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38190086

RESUMO

Sulfitobacter is a bacterium recognized for its production of AMP-independent sulfite oxidase, which is instrumental in the creation of sulfite biosensors. This capability underscores its ecological and economic relevance. In this study, we present a newly discovered phage, Sulfitobacter phage vB_SupP_AX, which was isolated from Maidao of Qingdao, China. The vB_SupP_AX genome is linear and double-stranded and measures 75,445 bp with a GC content of 49%. It encompasses four transfer RNA (tRNA) sequences and 79 open reading frames (ORFs), one of which is an auxiliary metabolic gene encoding thioredoxin. Consistent with other N4-like phages, vB_SupP_AX possesses three distinct RNA polymerases and is characterized by the presence of four tRNA molecules. Comparative genomic and phylogenetic analyses position vB_SupP_AX and three other viral genomes from the Integrated Microbial Genomes/Virus v4 database within the Rhodovirinae virus subfamily. The identification of vB_SupP_AX enhances our understanding of virus-host interactions within marine ecosystems.

3.
Virus Res ; 339: 199270, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37972855

RESUMO

Vibrio is a prevalent bacterial genus in aquatic environments and exhibits diverse metabolic capabilities, playing a vital role in marine biogeochemical cycles. This study isolated a novel virus infecting Vibrio cyclitrophicus, vB_VviC_ZQ26, from coastal waters near Qingdao, China. The vB_VviC_ZQ26 comprises a linear double-stranded DNA genome with a length of 42,982 bp and a G + C content of 43.21 %, encoding 72 putative open reading frames (ORFs). Transmission electron microscope characterization indicates a siphoviral-morphology of vB_VviC_ZQ26. Nucleic-acids-wide analysis indicates a tetranucleotide frequency deviation for genomic segments encoding putative gene transfer agent protein (GTA) and coil-containing protein, implying divergent origins occurred in different parts of viral genomes. Phylogenetic and genome-content-based analysis suggest that vB_VviC_ZQ26 represents a novel vibriophage-specific family designated as Coheviridae. From the result of biogeographic analysis, Coheviridae is mainly colonized in the temperate and tropical epipelagic zones. This study describes a novel vibriophage infecting V. cyclitrophicus, shedding light on the evolutionary divergence of different parts of the viral genome and its ecological footprint in marine environments.


Assuntos
Bacteriófagos , Vibrio , Filogenia , Vibrio/genética , DNA , Genoma Viral , Fases de Leitura Aberta , DNA Viral/genética
4.
mSystems ; 8(5): e0019723, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37702511

RESUMO

IMPORTANCE: The findings of this study are significant, as N4-like viruses represent a unique viral lineage with a distinct replication mechanism and a conserved core genome. This work has resulted in a comprehensive global map of the entire N4-like viral lineage, including information on their distribution in different biomes, evolutionary divergence, genomic diversity, and the potential for viral-mediated host metabolic reprogramming. As such, this work significantly contributes to our understanding of the ecological function and viral-host interactions of bacteriophages.


Assuntos
Bacteriófagos , Vírus , Genoma Viral/genética , Filogenia , Vírus/genética , Bacteriófagos/genética , Genômica
5.
Microbiol Spectr ; : e0191223, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37728551

RESUMO

Viruses play crucial roles in the ecosystem by modulating the host community structure, mediating biogeochemical cycles, and compensating for the metabolism of host cells. Mariana Trench, the world's deepest hadal habitat, harbors a variety of unique microorganisms that have adapted to its extreme conditions of low temperatures, high pressure, and nutrient scarcity. However, our knowledge about isolated hadal phage strains in the hadal trench is still limited. This study reported the discovery of a temperate phage, vB_HmeY_H4907, infecting Halomonas meridiana H4907, isolated from surface sediment from the Mariana Trench at a depth of 8,900 m. To our best knowledge, it is the deepest isolated siphovirus from the ocean. Its 40,452 bp linear dsDNA genome has 57.64% GC content and 55 open reading frames, and it is highly homologous to its host. Phylogenetic analysis and average nucleotide sequence identification reveal that vB_HmeY_H4907 is separated from the isolated phages and represents a new family, Suviridae, with eight predicted proviruses and six uncultured viral genomes. They are widely distributed in the ocean, suggesting a prevalence of this viral family in the deep sea. These findings expand our understanding of the phylogenetic diversity and genomic features of hadal lysogenic phages, provide essential information for further studies of phage-host interactions and evolution, and may reveal new insights into the lysogenic lifestyles of viruses inhabiting the hadal ocean. IMPORTANCE Halomonas phage vB_HmeY_H4907 is the deepest isolated siphovirus from the ocean, and it represents a novel abundant viral family in the ocean. This study provides insights into the genomic, phylogenetic, and ecological characteristics of the new viral family, namely, Suviridae.

6.
Virus Res ; 334: 199183, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37499764

RESUMO

Stutzerimonas stutzeri is an opportunistic pathogen widely distributed in the environment and displays diverse metabolic capabilities. In this study, a novel lytic S. stutzeri phage, named vB_PstM_ZRG1, was isolated from the seawater in the East China Sea (29°09'N, 123°39'E). vB_PstM_ZRG1 was stable at temperatures ranging from -20°C to 65°C and across a wide range of pH values from 3 to 10. The genome of vB_PstM_ZRG1 was determined to be a double-stranded DNA with a genome size of 52,767 bp, containing 78 putative open reading frames (ORFs). Three auxiliary metabolic genes encoded by phage vB_PstM_ZRG1 were predicted, including Toll/interleukin-1 receptor (TIR) domain, proline-alanine-alanine-arginine (PAAR) protein and SGNH (Ser-Gly-Asn-His) family hydrolase, especially TIR domain is not common in isolated phages. Phylogenic and network analysis showed that vB_PstM_ZRG1 has low similarity to other phage genomes in the GenBank and IMG/VR database, and might represent a novel viral genus, named Elithevirus. Additionally, the distribution map results indicated that vB_PstM_ZRG1 could infect both extreme colds- and warm-type hosts in the marine environment. In summary, our finding provided basic information for further research on the relationship between S. stutzeri and their phages, and expanded our understanding of genomic characteristics, phylogenetic diversity and distribution of Elithevirus.


Assuntos
Bacteriófagos , Filogenia , Genoma Viral , Genômica , Análise de Sequência de DNA , Fases de Leitura Aberta
7.
Microbiol Spectr ; 11(4): e0533522, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37272818

RESUMO

Psychrobacter is an important bacterial genus that is widespread in Antarctic and marine environments. However, to date, only two complete Psychrobacter phage sequences have been deposited in the NCBI database. Here, the novel Psychrobacter phage vB_PmaS_Y8A, infecting Psychrobacter HM08A, was isolated from sewage in the Qingdao area, China. The morphology of vB_PmaS_Y8A was characterized by transmission electron microscopy, revealing an icosahedral head and long tail. The genomic sequence of vB_PmaS_Y8A is linear, double-stranded DNA with a length of 40,226 bp and 44.1% G+C content, and encodes 69 putative open reading frames. Two auxiliary metabolic genes (AMGs) were identified, encoding phosphoadenosine phosphosulfate reductase and MarR protein. The first AMG uses thioredoxin as an electron donor for the reduction of phosphoadenosine phosphosulfate to phosphoadenosine phosphate. MarR regulates multiple antibiotic resistance mechanisms in Escherichia coli and is rarely found in viruses. No tRNA genes were identified and no lysogeny-related feature genes were detected. However, many similar open reading frames (ORFs) were found in the host genome, which may indicate that Y8A also has a lysogenic stage. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analysis indicate that vB_PmaS_Y8A contains a novel genomic architecture similar only to that of Psychrobacter phage pOW20-A, although at a low similarity. vB_PmaS_Y8A represents a new family-level virus cluster with 22 metagenomic assembled viral genomes, here named Minviridae. IMPORTANCE Although Psychrobacter is a well-known and important bacterial genus that is widespread in Antarctic and marine environments, genetic characterization of its phages is still rare. This study describes a novel Psychrobacter phage containing an uncharacterized antibiotic resistance gene and representing a new virus family, Minviridae. The characterization provided here will bolster current understanding of genomes, diversity, evolution, and phage-host interactions in Psychrobacter populations.


Assuntos
Bacteriófagos , Psychrobacter , Bacteriófagos/genética , Psychrobacter/genética , Filogenia , Fosfoadenosina Fosfossulfato , DNA Viral/genética , Genoma Viral , Escherichia coli/genética , Fases de Leitura Aberta
9.
Mar Life Sci Technol ; 5(2): 271-285, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37275543

RESUMO

Pseudoalteromonas, with a ubiquitous distribution, is one of the most abundant marine bacterial genera. It is especially abundant in the deep sea and polar seas, where it has been found to have a broad metabolic capacity and unique co-existence strategies with other organisms. However, only a few Pseudoalteromonas phages have so far been isolated and investigated and their genomic diversity and distribution patterns are still unclear. Here, the genomes, taxonomic features and distribution patterns of Pseudoalteromonas phages are systematically analyzed, based on the microbial and viral genomes and metagenome datasets. A total of 143 complete or nearly complete Pseudoalteromonas-associated phage genomes (PSAPGs) were identified, including 34 Pseudoalteromonas phage isolates, 24 proviruses, and 85 Pseudoalteromonas-associated uncultured viral genomes (UViGs); these were assigned to 47 viral clusters at the genus level. Many integrated proviruses (n = 24) and filamentous phages were detected (n = 32), suggesting the prevalence of viral lysogenic life cycle in Pseudoalteromonas. PSAPGs encoded 66 types of 249 potential auxiliary metabolic genes (AMGs) relating to peptidases and nucleotide metabolism. They may also participate in marine biogeochemical cycles through the manipulation of the metabolism of their hosts, especially in the phosphorus and sulfur cycles. Siphoviral and filamentous PSAPGs were the predominant viral lineages found in polar areas, while some myoviral and siphoviral PSAPGs encoding transposase were more abundant in the deep sea. This study has expanded our understanding of the taxonomy, phylogenetic and ecological scope of marine Pseudoalteromonas phages and deepens our knowledge of viral impacts on Pseudoalteromonas. It will provide a baseline for the study of interactions between phages and Pseudoalteromonas in the ocean. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-022-00160-z.

10.
Front Microbiol ; 14: 1161265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213492

RESUMO

Introduction: Vibrio is an important bacterial genus containing many pathogenic species. Although more and more Vibrio phages were isolated, the genome, ecology and evolution of Vibrio phages and their roles in bacteriophage therapy, have not been fully revealed. Methods: Novel Vibrio phage vB_ValR_NF infecting Vibrio alginolyticus was isolated from the coastal waters of Qingdao during the Ulva prolifera blooms, Characterization and genomic feature of phage vB_ValR_NF has been analysed using phage isolation, sequencing and metagenome method. Results and Discussion: Phage vB_ValR_NF has a siphoviral morphology (icosahedral head 114±1 nm in diameter; a tail length of 231±1 nm), a short latent period (30 minutes) and a large burst size (113 virions per cell), and the thermal/pH stability study showed that phage vB_ValR_NF was highly tolerant to a range of pHs (4-12) and temperatures (-20 - 45 °C), respectively. Host range analysis suggests that phage vB_ValR_NF not only has a high inhibitory ability against the host strain V. alginolyticus, but also can infect 7 other Vibrio strains. In addition, the phage vB_ValR_NF has a double-stranded 44, 507 bp DNA genome, with 43.10 % GC content and 75 open reading frames. Three auxiliary metabolic genes associated with aldehyde dehydrogenase, serine/threonine protein phosphatase and calcineurin-like phosphoesterase were predicted, might help the host V. alginolyticus occupy the survival advantage, thus improving the survival chance of phage vB_ValR_NF under harsh conditions. This point can be supported by the higher abundance of phage vB_ValR_NF during the U. prolifera blooms than in other marine environments. Further phylogenetic and genomic analysis shows that the viral group represented by Vibrio phage vB_ValR_NF is different from other well-defined reference viruses, and can be classified into a new family, named Ruirongviridae. In general, as a new marine phage infecting V. alginolyticus, phage vB_ValR_NF provides basic information for further molecular research on phage-host interactions and evolution, and may unravel a novel insight into changes in the community structure of organisms during the U. prolifera blooms. At the same time, its high tolerance to extreme conditions and excellent bactericidal ability will become important reference factors when evaluating the potential of phage vB_ValR_NF in bacteriophage therapy in the future.

11.
Appl Environ Microbiol ; 89(4): e0189622, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36975807

RESUMO

The marine bacterial family Oceanospirillaceae, is well-known for its ability to degrade hydrocarbons and for its close association with algal blooms. However, only a few Oceanospirillaceae-infecting phages have been reported thus far. Here, we report on a novel Oceanospirillum phage, namely, vB_OsaM_PD0307, which has a 44,421 bp linear dsDNA genome and is the first myovirus infecting Oceanospirillaceae. A genomic analysis demonstrated that vB_OsaM_PD0307 is a variant of current phage isolates from the NCBI data set but that it has similar genomic features to two high-quality, uncultured viral genomes identified from marine metagenomes. Hence, we propose that vB_OsaM_PD0307 can be classified as the type phage of a new genus, designated Oceanospimyovirus. Additionally, metagenomic read mapping results have further shown that Oceanospimyovirus species are widespread in the global ocean, display distinct biogeographic distributions, and are abundant in polar regions. In summary, our findings expand the current understanding of the genomic characteristics, phylogenetic diversity, and distribution of Oceanospimyovirus phages. IMPORTANCE Oceanospirillum phage vB_OsaM_PD0307 is the first myovirus found to infect Oceanospirillaceae, and it represents a novel abundant viral genus in polar regions. This study provides insights into the genomic, phylogenetic, and ecological characteristics of the new viral genus, namely Oceanospimyovirus.


Assuntos
Bacteriófagos , Oceanospirillaceae , Filogenia , Clima Frio , Genômica , Genoma Viral
12.
Trends Microbiol ; 31(3): 229-232, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36628835

RESUMO

While the diversity of global environmental RNA viruses has remained largely unexplored, recent advances have reported on the discovery of over 106 RNA viral contigs from both terrestrial and marine ecosystems that will help us to better understand the diversity, evolution, ecological roles, and transmission of RNA viruses.


Assuntos
Ecossistema , Vírus de RNA , Vírus de RNA/genética , Genoma Viral , Filogenia
13.
Microbiol Spectr ; 10(4): e0058522, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35862991

RESUMO

Vibrio parahaemolyticus, a widespread marine bacterium, is responsible for a variety of diseases in marine organisms. Consumption of raw or undercooked seafood contaminated with V. parahaemolyticus is also known to cause acute gastroenteritis in humans. While numerous dsDNA vibriophages have been isolated so far, there have been few studies of vibriophages belonging to the ssDNA Microviridae family. In this study, a novel ssDNA phage, vB_VpaM_PG19 infecting V. parahaemolyticus, with a 5,572 bp ssDNA genome with a G+C content of 41.31% and encoded eight open reading frames, was isolated. Genome-wide phylogenetic analysis of the total phage isolates in the GenBank database revealed that vB_VpaM_PG19 was only related to the recently deposited vibriophage vB_VpP_WS1. The genome-wide average nucleotide homology of the two phages was 89.67%. The phylogenetic tree and network analysis showed that vB_VpaM_PG19 was different from other members of the Microviridae family and might represent a novel viral genus, together with vibriophage vB_VpP_WS1, named Vimicrovirus. One-step growth curves showed that vB_VpaM_PG19 has a short incubation period, suggesting its potential as an antimicrobial agent for pathogenic V. parahaemolyticus. IMPORTANCE Vibriophage vB_VpaM_PG19 was distant from other isolated microviruses in the phylogenetic tree and network analysis and represents a novel microviral genus, named Vimicrovirus. Our report describes the genomic and phylogenetic features of vB_VpaM_PG19 and provides a potential antimicrobial candidate for pathogenic V. parahaemolyticus.


Assuntos
Genoma Viral , Microviridae , Vibrio parahaemolyticus , Genômica , Microviridae/classificação , Microviridae/genética , Fases de Leitura Aberta , Filogenia , Vibrio parahaemolyticus/virologia
14.
Front Microbiol ; 13: 853973, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432264

RESUMO

Shewanella is a common bacterial genus in marine sediments and deep seas, with a variety of metabolic abilities, suggesting its important roles in the marine biogeochemical cycles. In this study, a novel lytic Shewanella phage, vB_SInP-X14, was isolated from the surface coastal waters of Qingdao, China. The vB_SInP-X14 contains a linear, double-strand 36,396-bp with the G + C content of 44.1% and harbors 40 predicted open reading frames. Morphological, growth, and genomic analysis showed that it is the first isolated podovirus infecting Shewanella, with a short propagation time (40 min), which might be resulted from three lytic-related genes. Phylogenetic analysis suggested that vB_SInP-X14 could represent a novel viral genus, named Bocovirus, with four isolated but not classified phages. In addition, 14 uncultured viral genomes assembled from the marine metagenomes could provide additional support to establish this novel viral genus. This study reports the first podovirus infecting Shewanella, establishes a new interaction system for the study of virus-host interactions, and also provides new reference genomes for the marine viral metagenomic analysis.

15.
Microbiol Spectr ; 9(2): e0046321, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34643440

RESUMO

Alteromonas is a ubiquitous, abundant, copiotrophic and phytoplankton-associated marine member of the Gammaproteobacteria with a range extending from tropical waters to polar regions and including hadal zones. Here, we describe a novel Alteromonas phage, ZP6, that was isolated from surface coastal waters of Qingdao, China. ZP6 contains a linear, double-stranded, 38,080-bp DNA molecule with 50.1% G+C content and 47 putative open reading frames (ORFs). Three auxiliary metabolic genes were identified, encoding metal-dependent phosphohydrolase, diaminopurine synthetase, and nucleotide pyrophosphohydrolase. The first two ORFs facilitate the replacement of adenine (A) by diaminopurine (Z) in phage genomes and help phages to evade attack from host restriction enzymes. The nucleotide pyrophosphohydrolase enables the host cells to stop programmed cell death and improves the survival rate of the host in a nutrient-depleted environment. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analysis revealed that ZP6 is most closely related to Enhodamvirus but with low similarity (shared genes, <30%, and average nucleotide sequence identity, <65%); it is distinct from other bacteriophages. Together, these results suggest that ZP6 could represent a novel viral genus, here named Mareflavirus. Combining its ability to infect Alteromonas, its harboring of a diaminopurine genome-biosynthetic system, and its representativeness of an understudied viral group, ZP6 could be an important and novel model system for marine virus research. IMPORTANCEAlteromonas is an important symbiotic bacterium of phytoplankton, but research on its bacteriophages is still at an elementary level. Our isolation and genome characterization of a novel Alteromonas podovirus, ZP6, identified a new viral genus of podovirus, namely, Mareflavirus. The ZP6 genome, with a diaminopurine genome-biosynthetic system, is different from those of other isolated Alteromonas phages and will bring new impetus to the development of virus classification and provide important insights into novel viral sequences from metagenomic data sets.


Assuntos
Alteromonas/virologia , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Genoma Viral , Myoviridae/genética , Myoviridae/isolamento & purificação , Bacteriófagos/classificação , Bacteriófagos/crescimento & desenvolvimento , China , Myoviridae/classificação , Fases de Leitura Aberta , Filogenia , Água do Mar/virologia
16.
Front Microbiol ; 12: 726074, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512604

RESUMO

Marinobacter is the abundant and important algal-associated and hydrocarbon biodegradation bacteria in the ocean. However, little knowledge about their phages has been reported. Here, a novel siphovirus, vB_MalS-PS3, infecting Marinobacter algicola DG893(T), was isolated from the surface waters of the western Pacific Ocean. Transmission electron microscopy (TEM) indicated that vB_MalS-PS3 has the morphology of siphoviruses. VB_MalS-PS3 was stable from -20 to 55°C, and with the latent and rise periods of about 80 and 10 min, respectively. The genome sequence of VB_MalS-PS3 contains a linear, double-strand 42,168-bp DNA molecule with a G + C content of 56.23% and 54 putative open reading frames (ORFs). Nineteen conserved domains were predicted by BLASTp in NCBI. We found that vB_MalS-PS3 represent an understudied viral group with only one known isolate. The phylogenetic tree based on the amino acid sequences of whole genomes revealed that vB_MalS-PS3 has a distant evolutionary relationship with other siphoviruses, and can be grouped into a novel viral genus cluster with six uncultured assembled viral genomes from metagenomics, named here as Marinovirus. This study of the Marinobacter phage vB_MalS-PS3 genome enriched the genetic database of marine bacteriophages, in addition, will provide useful information for further research on the interaction between Marinobacter phages and their hosts, and their relationship with algal blooms and hydrocarbon biodegradation in the ocean.

17.
BMC Genomics ; 22(1): 675, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34544379

RESUMO

BACKGROUND: Marine bacteriophages play key roles in the community structure of microorganisms, biogeochemical cycles, and the mediation of genetic diversity through horizontal gene transfer. Recently, traditional isolation methods, complemented by high-throughput sequencing metagenomics technology, have greatly increased our understanding of the diversity of bacteriophages. Oceanospirillum, within the order Oceanospirillales, are important symbiotic marine bacteria associated with hydrocarbon degradation and algal blooms, especially in polar regions. However, until now there has been no isolate of an Oceanospirillum bacteriophage, and so details of their metagenome has remained unknown. RESULTS: Here, we reported the first Oceanospirillum phage, vB_OliS_GJ44, which was assembled into a 33,786 bp linear dsDNA genome, which includes abundant tail-related and recombinant proteins. The recombinant module was highly adapted to the host, according to the tetranucleotides correlations. Genomic and morphological analyses identified vB_OliS_GJ44 as a siphovirus, however, due to the distant evolutionary relationship with any other known siphovirus, it is proposed that this virus could be classified as the type phage of a new Oceanospirivirus genus within the Siphoviridae family. vB_OliS_GJ44 showed synteny with six uncultured phages, which supports its representation in uncultured environmental viral contigs from metagenomics. Homologs of several vB_OliS_GJ44 genes have mostly been found in marine metagenomes, suggesting the prevalence of this phage genus in the oceans. CONCLUSIONS: These results describe the first Oceanospirillum phage, vB_OliS_GJ44, that represents a novel viral cluster and exhibits interesting genetic features related to phage-host interactions and evolution. Thus, we propose a new viral genus Oceanospirivirus within the Siphoviridae family to reconcile this cluster, with vB_OliS_GJ44 as a representative member.


Assuntos
Bacteriófagos , Siphoviridae , Bacteriófagos/genética , DNA Viral/genética , Genoma Viral , Genômica , Filogenia , Siphoviridae/genética
18.
Virus Res ; 295: 198265, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33550041

RESUMO

Although Pseudoalteromonas is an abundant, ubiquitous, marine algae-associated bacterial genus, there is still little information on their phages. In the present study, a marine phage AL, infecting Pseudoalteromonas marina, was isolated from the coastal waters off Qingdao. The AL phage is a siphovirus with an icosahedral head of 53 ± 1 nm and a non-contractile tail, length of 99 ± 1 nm. A one-step growth curve showed that the latent period was approximately 70 min, the rise period was 50 min, and the burst size was 227 pfu/cell. The genome sequence of this phage is a 33,582 bp double-stranded DNA molecule with a GC content of 40.1 %, encoding 52 open reading frames (ORFs). The order of the functional genes, especially those related to the structure module, is highly conserved and basically follows the common pattern used by siphovirus. The stable order has been formed during the long-term evolution of phages in the siphovirus group, which has helped the phages to maintain their normal morphology and function. Phylogenetic trees based on the major capsid protein (mcp) and genome-wide sequence have shown that the AL phage is closely related to four Pseudoalteromonas phages, including PHS21, PHS3, SL25 and Pq0. Further analysis using all-to-all BLASTP also confirmed that this phage shared high sequence homology with the same four Pseudoalteromonas phages, with amino acid sequence identities ranging from 44 % to 71 %. In particular, their similarity in virion structure module may imply that these phages share common assembly mechanism characteristics and infection pathways. Pseudoalteromonas phage AL not only provides basic information for the further study of the evolution of Pseudoalteromonas phages and interactions between marine phage and host but also helps to explain the unknown viral sequences in the metagenomic databases.


Assuntos
Bacteriófagos , Pseudoalteromonas , DNA Viral/química , DNA Viral/genética , Genoma Viral , Fases de Leitura Aberta , Filogenia , Pseudoalteromonas/genética , Água do Mar , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...